Unconditional and Composable Security Using a Single Stateful Tamper-Proof Hardware Token
نویسندگان
چکیده
Cryptographic assumptions regarding tamper proof hardware tokens have gained increasing attention. Even if the tamper-proof hardware is issued by one of the parties, and hence not necessarily trusted by the other, many tasks become possible: Tamper proof hardware is sufficient for universally composable protocols, for information-theoretically secure protocols, and even allow to create software which can only be used once (One-Time-Programs). However, all known protocols employing tamper-proof hardware are either indirect, i.e., additional computational assumptions must be used to obtain general two party computations or a large number of devices must be used. In this work we present the first protocol realizing universally composable two-party computations (and even trusted One-Time-Programs) with information-theoretic security using only one single tamper-proof device issued by one of the mutually distrusting parties.
منابع مشابه
David & Goliath Oblivious Affine Function Evaluation - Asymptotically Optimal Building Blocks for Universally Composable Two-Party Computation from a Single Untrusted Stateful Tamper-Proof Hardware Token
Cryptographic assumptions regarding tamper-proof hardware tokens have gained increasing attention. Even if the tamper-proof hardware is issued by one of the parties, and hence not necessarily trusted by the other, many tasks become possible: Tamper proof hardware is sufficient for universally composable protocols, for information-theoretically secure protocols, and even can be used to create so...
متن کاملGeneral Statistically Secure Computation with Bounded-Resettable Hardware Tokens
Universally composable secure computation was assumed to require trusted setups, until it was realized that parties exchanging (untrusted) tamper-proof hardware tokens allow an alternative approach (Katz; EUROCRYPT 2007). This discovery initialized a line of research dealing with two different types of tokens. Using only a single stateful token, one can implement general statistically secure tw...
متن کاملFrom Stateful Hardware to Resettable Hardware Using Symmetric Assumptions
Universally composable multi-party computation is impossible without setup assumptions. Motivated by the ubiquitous use of secure hardware in many real world security applications, Katz (EUROCRYPT 2007) proposed a model of tamper-proof hardware as a UC-setup assumption. An important aspect of this model is whether the hardware token is allowed to hold a state or not. Real world examples of tamp...
متن کاملUniversally Composable Secure Two and Multi-party Computation in the Corruptible Tamper-Proof Hardware Token Model
In this work we introduce the corruptible token model. This model generalizes the stateless tamper-proof token model introduced by Katz (EUROCRYPT ’07) and relaxes the trust assumption. Our improved model is motivated by the real-world practice of outsourcing hardware production to possibly untrusted manufacturers and allows tokens created by honest parties to be corrupted at the time of their ...
متن کاملUnconditional UC-Secure Computation with (Stronger-Malicious) PUFs
Brzuska et. al. (Crypto 2011) proved that unconditional UC-secure computation is possible if parties have access to honestly generated physically unclonable functions (PUFs). Dachman-Soled et. al. (Crypto 2014) then showed how to obtain unconditional UC secure computation based on malicious PUFs, assuming such PUFs are stateless. They also showed that unconditional oblivious transfer is impossi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011